The DARPA Grand Challenge – Participant's Perspective

About Presenter

- Physicist, Software Engineer/Scientist.
- Technology interest:
 - Autonomous system (road vehicles).
 - Real-time computer vision applications.
 - Augmented Reality (AR).
 - Mobile and Wearable Computing.
 - Computer vision for computer music.
- Since 1990: computer vision for automated driving (EU project PROMETHEUS).
- Since 1996: Rockwell Scientific (RSC), US
- Since Sept. 2005: Professor of Creative Technology at Leeds Metropolitan University.

The DARPA Grand Challenge

- Competition of Autonomous Ground Vehicles:
 - No driver, no remote control.
 - Through California Mojave desert, on dirt roads and offroad.
 - Maximum route distance: 250 miles.
 - Duration: 10 hours.
 - Exact route is only known 2h before the competition begins.
 - Anyone could participate!
- Prize for winning team: \$2 Million.

- DARPA = Defense Advanced Research Projects Agency.
- Inventors of the Internet in the 1960s.
- Annual budget (2003): \$2.6 Billion.
- http://www.darpa.mil

Team SciAutonics

- Team was founded in 2003, for the purpose of participating in this competition.
- Organization as "SciAutonics, LLC".
- Team members: employees of RSC and other engineering companies around Los Angeles.
- Not affiliated with DARPA.

The RASCAL Vehicle

 Robust Autonomous Sensor-Controlled All-Terrain Land-Vehicle = RASCAL.

Leeds Metropolitan University Innovation North – Faculty Of Information And Technology

First Grand Challenge

- First time organized in March 2004:
 - No winner.
 - Best vehicle drove 7.4 miles (CMU SandStorm).
 - Vehicles got disabled by various technology failures.

Leeds Metropolitan University Innovation North – Faculty Of Information And Technology

2005 Grand Challenge

- Better organisation:
 - Start and end at same location.
 - Easy part in the beginning.
 - Shorter course layout (130 miles).
 - Selection of participating vehicles: stricter criteria. Must have active perception on board.
- Improvements of teams:
 - Technology more robust.

Testing of RASCAL

Leeds Metropolitan University Innovation North – Faculty Of Information And Technology

Course map. From DARPA Grand Challenge Web site.

Winner: Stanley (Stanford U.)

Picture from DARPA Grand Challenge Website

Results

- Three vehicles managed to drive within 10 hours on the first day:
 - Stanford University (6h 53 min)
 - 2x Carnegie Mellon University (7h 04m, 7h 13m)
- One other team completed the course on the next day:
 - Gray Team (7h 30 min)
- And another team completed course beyond the 10 h limit:
 - TerraMax (12h 51 min)

All Results

ID	TEAM	TIME	DISTANCE
E : 1	Stanford Racing Team	6h 53m	
19	Red Team	7h-4m	
25	Red Team Too	7h 14m	
30	Gray Team	7h 30m	
21	Team TerraMax	12h 51m	
28	Team ENSCO.	DNF	
23	Axion Racing	DNF	
38	Virginia Tech Grand Challenge	DNF	
9	Virginia Tech Team Rocky	DNF	
10	Desert Buckeyes	ONF	
4	Team DAD (Digital Auto Drive	ONF	
14	Insight Racing	DNF	
1	Mojavaton	DNF	
18	The Golem Group / UCLA	ONF	
24	Team CajunBot	DNF	
20	SciAutonics/Auburn Engineer	DNF	
15	Intelligent Vehicle Safety Teci	DNF	
8	CIMAR	DNF	
41	Princeton University	DNF	
26	Team Cornell	DNF	
2	Team Caltech	DNF	
16	MonsterMoto	DNF	
37	The MITRE Meteorites	DNF	

Motivation for DARPA

- Challenge organization:
 - New way of obtaining results from many teams working unpaid.
 - Harnessing ingenuity from non-traditional participants.
- Long-term goal:
 - Unmanned vehicles in military missions.

Motivation for Teams

- Competitive sporting event: try to win the race.
- Interest in developing new technology.
- Forming a new business.
- Have fun.

Other Motivation

Ethics

- Automatic vehicle technology can safe lives.
 - Planned application: unmanned transport convoys.
- But: lowers the threshold of military conflict.
- Future systems in preparation:
 - Automatic shooter systems.
 - These were highly controversial when installed at the German-German border.
 - Issues for being used in wars?
 - Scope of discussion gets broader, into general discussion on war and military conflict.

Suggestion re. Roadmap

- Legislative action (binding guidelines) is not promising:
 - Countries consider themselves sovereign.
 - Enforcement is difficult.
- Alternative:
 - Similar to the "oath of Hippocrates" a personal individual "oath of the robotist", for the individual researcher / scientist / developer who is working on intelligent autonomous systems, to implement Asimov's three Laws of Robotics (or others).

Future Outlook

- R&D in Military domain can greatly enhance robotic capabilities, also for non-military purposes.
- Situation similar to development of Nuclear Bomb in the 1940s:
 - Since then, physicists have heightened awareness of the dangerous possibilities of their field.
- When will the "Hiroshima of Information Technology" come?

- DARPA Grand Challenge brought robotic vehicles research significantly further.
- Roadmap and guidelines are helpful for channeling robotics efforts into beneficial developments.

